Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(36): 10779-10785, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320699

RESUMO

Immunogenic Cell Death (ICD) is a unique cell death mechanism that kills cancer cells while rejuvenating the anticancer immunosurveillance, thereby benefiting the clinical outcomes of various immuno-chemotherapeutic regimens. Herein, we report development of a library of benzo[a]quinolizinium-based Au(i) complexes through an intramolecular amino-auration reaction of pyridino-alkynes. We tested 40 candidates and successfully identified BQ-AurIPr as a novel redox-active Au(i) complex with potent anticancer properties. BQ-AurIPr efficiently triggered generation of DAMPs - the hallmarks of ICD - and was superior in terms of efficiency compared to FDA-approved drugs known to induce ICD. BQ-AurIPr significantly increased immunogenicity of cancer cells enhancing their phagocytosis when co-cultured with immune cells. Our investigation reveals that BQ-AurIPr induces oxidative stress inside mitochondria leading to mitophagy, as the mechanism for immunogenic cell death in A549 cells.

2.
Chemistry ; 28(38): e202200632, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429368

RESUMO

Recently, the concept of anion-π+ interactions has witnessed unique applications in the field of AIEgen development. In this contribution, we disclose a consolidated study of a library of N-doped ionic AIEgens accessed through silver-mediated cyclization of pyridino-alkynes. A thorough photophysical, computational and crystallographic study has been conducted to rationalize the observed substituent- and counterion-dependent fluorescence properties of these luminogens. We further elucidate the prominent role of anion-π+ interactions, π+ -π+ interactions and other non-covalent interactions, in inhibiting the undesired ACQ effect. Finally, we have also demonstrated the application of selected AIEgens for imaging of mitochondria in live cells.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Ânions , Fluorescência , Corantes Fluorescentes/química , Íons
3.
Org Lett ; 22(12): 4792-4796, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32510962

RESUMO

By applying the "interplay" mode, which consolidates two key reactivity modes of gold catalysis, namely π-activation mode and cross-coupling mode, the first alkynylative Meyer-Schuster rearrangement is designed and successfully implemented. The current protocol gives straightforward access to enynones, a highly valuable building block, from easily available propargyl alcohol feedstocks. Control experiments suggest an Au(III) catalyst triggers the Meyer-Schuster rearrangement, whereas monitoring the reaction with ESI-HRMS provided strong evidence in favor of a key alkynylgold(III) intermediate which supports the proposed "interplay" scenario.

4.
Planta ; 251(1): 28, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31802261

RESUMO

MAIN CONCLUSION: Exploration with high-throughput transcriptomics and metabolomics of two varieties of Ceropegia bulbosa identifies candidate genes, crucial metabolites and a potential cerpegin biosynthetic pathway. Ceropegia bulbosa is an important medicinal plant, used in the treatment of various ailments including diarrhea, dysentery, and syphilis. This is primarily attributed to the presence of pharmaceutically active secondary metabolites, especially cerpegin. As this plant belongs to an endemic threatened category, genomic resources are not available hampering exploration on the molecular basis of cerpegin accumulation till now. Therefore, we undertook high-throughput metabolomic and transcriptomic analyses using different tissues from two varieties namely, C. bulbosa var. bulbosa and C. bulbosa var. lushii. Metabolomic analysis revealed spatial and differential accumulation of various metabolites. We chemically synthesized and characterized the cerpegin and its derivatives by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Importantly, these comparisons suggested the presence of cerpegin and 5-allyl cerpegin in all C. bulbosa tissues. Further, de novo transcriptome analysis indicated the presence of significant transcripts for secondary metabolic pathways through the Kyoto encyclopedia of genes and genomes database. Tissue-specific profiling of transcripts and metabolites showed a significant correlation, suggesting the intricate mechanism of cerpegin biosynthesis. The expression of potential candidate genes from the proposed cerpegin biosynthetic pathway was further validated by qRT-PCR and NanoString nCounter. Overall, our findings propose a potential route of cerpegin biosynthesis. Identified transcripts and metabolites have built a foundation as new molecular resources that could facilitate future research on biosynthesis, regulation, and engineering of cerpegin or other important metabolites in such non-model plants.


Assuntos
Apocynaceae/genética , Apocynaceae/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Metabolômica , Piridonas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Análise de Componente Principal , Piridonas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
J Org Chem ; 84(7): 4120-4130, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30813732

RESUMO

An interesting case of external oxidant-controlled reactivity switch leading to a divergent set of ionic nitrogen-doped polycyclic aromatic hydrocarbons (N-doped PAHs), is presented here, which is quite unrecognized in copper-mediated reactions. In the current scenario, from the same pyridino-alkyne substrates, the use of the external oxidant PhI(OAc)2, in combination with Cu(OTf)2, gave N-doped spiro-PAHs via a dearomative 1,2-carboamination process; whereas, without the use of oxidant, an alkyne/azadiene [4 + 2]-cycloaddition cascade occurred to exclusively afford ionic N-doped PAHs. These newly synthesized N-doped PAHs further exhibit tunable emissions, as well as excellent quantum efficiencies.

6.
J Org Chem ; 84(4): 1766-1777, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30638382

RESUMO

We recently developed an oxidative intramolecular 1,2-amino-oxygenation reaction, combining gold(I)/gold(III) catalysis, for accessing structurally unique ionic pyridinium-oxazole dyads (PODs) with tunable emission wavelengths. On further investigation, these fluorophores turned out to be potential biomarkers; in particular, the one containing -NMe2 functionality (NMe2-POD) was highly selective for mitochondrial imaging. Of note, because of mitochondria's involvement in early-stage apoptosis and degenerative conditions, tracking the dynamics of mitochondrial morphology with such imaging technology has attracted much interest. Along this line, we wanted to build a library of such PODs which are potential mitochondria trackers. However, Au/Selecfluor, our first-generation catalyst system, suffers from undesired fluorination of electronically rich PODs resulting in an inseparable mixture (1:1) of the PODs and their fluorinated derivatives. In our attempt to search for a better alternative to circumvent this issue, we developed a second-generation approach for the synthesis of PODs by employing Cu(II)/PhI(OAC)2-mediated oxidative 1,2-amino-oxygenation of alkynes. Thes newly synthesized PODs exhibit tunable emissions as well as excellent quantum efficiency up to 0.96. Further, this powerful process gives rapid access to a library of NMe2-PODs which are potential mitochondrial imaging agents. Out of the library, the randomly chosen POD-3g was studied for cell-imaging experiments which showed high mitochondrial specificity, superior photostability, and appreciable tolerance to microenvironment changes with respect to commercially available MitoTracker green.


Assuntos
Corantes Fluorescentes/síntese química , Íons/química , Mitocôndrias/química , Oxazóis/síntese química , Compostos de Piridínio/síntese química , Apoptose , Corantes Fluorescentes/química , Humanos , Oxazóis/química , Compostos de Piridínio/química
7.
Chem Commun (Camb) ; 54(84): 11909-11912, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30283940

RESUMO

Reported herein, for the first time, is a copper-promoted intramolecular [4+2]-cycloaddition cascade to access ionic N-doped polycyclic aromatic hydrocarbons (PAHs) with tunable emission wavelengths. It is shown that the reaction can be made catalytic with respect to Cu(OTf)2 when an external oxidant, Selectfluor, was used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...